Rotundifolides A and B, Two New Enol-Derived Butenolactones from the Bark of *Litsea rotundifolia* var. *oblongifolia*

by Ya Zhao, Yue-Wei Guo*, and Wen Zhang

State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Zu Chong Zhi Rd. 555, Zhangjiang High-Tech Park, Shanghai 201203, P. R. China (phone: 86-21-50805813; e-mail: ywguo@mail.shcnc.ac.cn)

Two new enol-derived butenolactones, rotundifolides A (1) and B (2), along with four known related compounds, lincomolide C (3), lincomolide A (4), marliolide (5), and litsenolide A_1 (6), were isolated from the bark of *Litsea rotundifolia* var. *oblongifolia*. The structures of the new metabolites were characterized by spectroscopic methods and comparison with known compounds.

Introduction. – *Litsea* is a genus in the family Lauraceae with *ca.* 72 species distributed in South and Southwest China [1]. Most *Litsea* plants contain alkaloids [2–4], flavonoids [5][6], terpenes [7][8], lactones [9], and volatile oil [10], which were reported to possess a variety of biological activities ranging from antimicrobial, hypothermic, to antitumor activities [2][11][12]. In continuation of our work on the chemical constituents of Chinese medicinal plants, we have examined the secondary metabolites present in the bark of *L. rotundifolia* var. *oblongifolia*, since no phytochemical investigation has been done on the species. Two new enol-derived buteno-4-lactones, named rotundifolides A (1) and B (2), along with four known related butenolactones, lincomolide C (3) [13], lincomolide A (4) [14], marliolide (5) [15], and litsenolide A_1 (6) [16] were isolated from the title plant. This paper describes the structure elucidation of the new compounds.

Results and Discussion. – Specimens of *L. rotundifolia* var. *oblongifolia* were extracted exhaustively with MeOH, and the MeOH extract was partitioned between H_2O and organic solvents to afford AcOEt-soluble and BuOH-soluble fractions. The AcOEt extract was further separated by column chromatography and semi-prep. HPLC (see *Exper. Part*) to give the known metabolites $\mathbf{3-6}$ [13–16] and the new compounds $\mathbf{1}$ and $\mathbf{2}$. The new compounds demonstrated considerable spectral analogy with the co-occurring known butenolides $\mathbf{3-6}$ [13–16].

Rotundifolide A (1), a colorless and optically active oil, exhibited the absorption bands of an OH group (3399 cm⁻¹) and an α,β -unsaturated γ -lactone (1747 and 1660 cm⁻¹) in the IR spectrum. The molecular formula of 1 was determined to be C₁₇H₂₈O₃ from its HR-EI-MS (m/z 280.2042 (M^+)). From analysis of the ¹H- and ¹³C-NMR (Table) and UV spectra, compound 1 has the same unsaturated β -hydroxy- γ -methyl- γ -lactone structure as that of co-occurring lincomolide C (3) [13]. Nevertheless, the NMR spectra of 1 were somewhat different from those of 3. On the basis of the spectral evidence, structure 1 was determined to be (5S)-3-(dodec-11-enyl)-4-hydroxy-

5-methylfuran-2(5 H)-one, which was further confirmed by ${}^{1}H, {}^{1}H$ COSY, HMQC, and HMBC (Fig.) experiments.

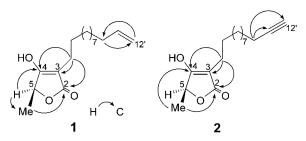


Figure. Selected key HMBC correlations of 1 and 2

Careful comparison of the 1 H- and 13 C-NMR spectra of ${\bf 1}$ with those of ${\bf 3}$ revealed that the differences were mainly in the butenolactone moiety. The lack of the characteristic olefinic-proton resonance (H-C(1')) and the H-C(4) resonance of ${\bf 3}$ together with the appearance of a quaternary C-atom at δ 177.6 strongly indicated the enol-derived nature of the butenolactone moiety of ${\bf 1}$. In addition, the 1 H-NMR signals at δ 4.83 (m, H-C(5)) and 1.50 (d, J=6.0 Hz, Me-C(5)) were attributable to a CH bearing a Me group. The presence of an endocyclic butenolactone moiety in ${\bf 1}$ was further confirmed by the comparison of 1 H- and 13 C-NMR data of ${\bf 1}$ with those of model compound ${\bf 8}$ [17]. The absolute configuration at C(5) of ${\bf 1}$ was suggested to be (S), opposite to that established for a related compound ${\bf 7}$, by comparing the positive $[\alpha]_D$ value of ${\bf 1}$ $([\alpha]_D=+11$ (dioxane)) with the

Table. Selected ¹H- and ¹³C-NMR Data^a)^b) of Compounds 1-3

	1		2		3	
	$\delta(H)^b$)	δ(C) ^c)	$\delta(H)^b$)	δ(C) ^c)	$\delta(H)^b$)	δ(C) ^c)
C(2)	_	177.8 (s)	-	176.9 (s)	_	169.8 (s)
C(3)	_	100.7(s)	-	101.0 (s)		130.5(s)
C(4) or $H-C(4)$	_	177.6(s)	_	176.6 (s)	4.80 (d, J = 4.9)	67.8(d)
H-C(5)	4.83 (m)	75.3(d)	4.82(m)	74.9(d)	4.52 (dq, J = 6.6, 4.9)	78.6(d)
Me-C(5)	1.50 (d, J = 6.0)	17.8 (q)	1.49 (d, J = 6.0)	17.8 (q)	1.44 $(d, J = 6.6)$	14.0 (q)
$H-C(1')$ or $CH_2(1')$	2.19 (t, J = 6.1)	31.8 (t)	2.18 (m)	31.9 (t)	6.94 $(t, J=7.8)$	147.8 (d)
$CH_2(2')$	_	_	_	_	2.39 (dt, J = 7.8)	32.0(t)
CH ₂ (10')	2.02(m)	33.7(t)	2.18(m)	18.3(t)	2.01 (m)	33.8 (t)
C(11') or H–C (11')	5.79 (<i>ddt</i> , <i>J</i> = 6.6, 10.2, 17.0)	139.1 (d)	-	84.7 (s)	5.78 (ddt, J = 6.6, 10.2, 17.0)	139.2 (d)
H-C (12') or CH ₂ (12')	4.98 (dd, J=1.6, 17.0), 4.92 (br. d, J=10.2)	114.0 (t)	1.93 (s)	68.0 (d)	4.97 (dd, J=1.7, 17.0), 4.91 (br. d, J=10.2)	114.1 (t)

^{a)} Bruker DRX-400 spectrometer; measured in CDCl₃; chemical shifts in δ relative to the CDCl₃ (δ 77.0) and residual CHCl₃ signals (δ 7.26) as internal standard, respectively; assignments by analysis of 1D and 2D NMR spectra. ^b) Unassigned CH₂ protons contributed to an intense signal at δ 1.25 – 1.30. ^c) The CH₂ C-atoms not assigned specifically contributed to an intense signal centered at δ 29.8.

negative one of 7 ($[a]_D = -29.8$ (dioxane)) [18]. Moreover, the same positive $[a]_D$ sign of 1 as those of the closely related compounds 9 and 10 [19] further supported the assigned (5S) configuration.

Rotundifolide B (2), a colorless oil, gave a quasi-molecular ion at m/z 277 ([M-H]⁻) in its ESI-MS, corresponding to a molecular formula $C_{17}H_{26}O_3$, of two mass units less than that of 1. The ¹H-NMR spectrum of 2 exhibited similarities with that of compound 1. In fact, compound 2 differs from 1 only by the presence of a terminal ethynyl group ($\delta(H)$ 1.93 (s, H-C(12')), $\delta(C)$ 68.0 (d) and 84.7 (s)) instead of a terminal C=C bond in the C_{12} side chain. As in the case of 1, the configuration at C(5) was assigned to be (S).

The new enol-derived butenolactones 1 and 2 are encountered for the first time in Lauraceae plants although their corresponding deoxy derivatives 9 and 10 have been isolated from the leaves of three species of *Hortonia* (family Monimiaceae) very recently [19]. In particular, it is of interest that both 9 and 10 were reported to have potent mosquito larvicidal activity against the second instar larvae of *Aedes aegypti* [19]. It, thus, seems desirable to assay the butenolactones 1-6 for the same biological properties.

In addition, bioactivity screenings revealed that rotundifolide A (1) exhibited significant *in vitro* inhibitory activity ($IC_{50} = 9.2 \mu M$) against the enzyme protein tyrosine phosphatase-1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for type-II diabetes [20].

This work was financially supported by the grant 30125044 from the National Natural Science Foundation for Outstanding Youth. The authors are grateful to Prof. F.-W. Xin, South China Institute of Botany, Chinese

Academy of Sciences, for identification of the plant material. The NMR and the mass spectra were obtained from the 'SIMM-NMR, MS Services'. The staff of both services are gratefully acknowledged.

Experimental Part

General. Column chromatography (CC): commercial silica gel (Qing Dao Hai Yang Chemical Group Co.; 100 – 200 and 200 – 300 mesh). Anal. TLC: precoated silica gel plates (Yan Tai Zi Fu Chemical Group Co.; G60 F-254). Reversed-phase HPLC: Agilent 1100 liquid chromatograph, equipped with an Agilent 1100-G1314A variable-wavelength detector; semi-prep. Develosil ODS-5 column (5 μm; 9.6 mm (i.d.) × 25 cm); t_R in min. Optical rotation: Perkin-Elmer 341 polarimeter. UV Spectra: Varian-Cary 300-Bio spectrophotometer; λ_{\max} (log ε) in nm. IR Spectra: Nicolet Magna-FT-IR-750 spectrometer; v_{\max} in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker DRX-400 spectrometer at 400 MHz for ¹H and 100 MHz for ¹³C; chemical shifts δ in ppm, with residual CHCl₃ (δ(H) 7.26, δ(C) 77.0) as internal standard, coupling constants J in Hz; assignments supported by ¹H, ¹H-COSY, HMQC, and HMBC experiments. EI-MS and HR-EI-MS: MAT-95 mass spectrometer; in m/z (rel. %). ESI-MS and HR-ESI-MS: Q-TOF-Micro LC-MS-MS mass spectrometer; in m/z.

Plant Material. The sample examined was collected from the Guangdong Province of China in August 2001 and identified by Prof. F-W. Xin of the South China Institute of Botany, Chinese Academy of Sciences. A voucher specimen (no. PL02-5) is deposited in the Herbarium of the Institute of Materia Medica, SIBS-CAS.

Extraction and Purification. The powdered bark of *L. rotundifolia* var. oblongifolia (1 kg) was repeatedly extracted with MeOH (91) at r.t. The extract was evaporated to give a brown syrup (132 g), which was partitioned with solvents into AcOEt-soluble (65 g) and BuOH-soluble (20 g) fractions, respectively. The AcOEt-soluble portion was subjected to CC (*Sephadex LH-20*, CHCl₃/MeOH 1:1): *Fractions 1–15. Fr. 5* (110.3 mg) was subjected to CC (silica gel, petroleum ether/Et₂O gradient): mixture of lactones (*Fr. 5.1*; 20.6 mg), crude **1** (*Fr. 5.2*; 15.2 mg), and crude **2** (*Fr. 5.3*; 10.6 mg). *Fr. 5.1* was further separated by prep. HPLC (MeOH/H₂O 8:2, flow rate 2 ml/min): **3** (4.6 mg; t_R 20.9), **5** (3.2 mg; t_R 21.8), **6** (2.8 mg; t_R 22.5), and **4** (1.8 mg; t_R 31.7). The crude **1** and **2** were each resubjected to CC (silica gel, petroleum ether/Et₂O 4:6): pure **1** (10.0 mg) and **2** (8.2 mg).

Rotundifolide A (= (5S)-3-(Dodec-11-enyl)-4-hydroxy-5-methylfuran-2(5H)-one; **1**): Colorless oil. [α]_D = +11 (c = 0.25, dioxane). UV (EtOH): 210 (4.2). IR (KBr): 3399, 2923, 2850, 1747, 1660, 1641, 1072, 912. 1 H- and 13 C-NMR: Table. ESI-MS: 279 ([M – H] $^{-}$). EI-MS: 280 (15, M $^{+}$), 262 (8), 128 (92), 115 (100), 98 (28), 69 (32), 55 (56). HR-EI-MS: 280.2042 (C₁₇H₂₈O $_{3}^{+}$; calc. 280.2038).

Rotundifolide B = (5S)-3-(Dodec-11-ynyl)-4-hydroxy-5-methylfuran-2(5H)-one;**2** $): Colorless oil. [<math>\alpha$]_D = +21.7 (c=0.20, dioxane). UV (EtOH): 210 (4.2). IR (KBr): 3309, 2923, 2850, 2118, 1757, 1660, 1465, 1071, 721, 636. 1 H- and 13 C-NMR: *Table*. ESI-MS: 277 ([M-H] $^{-}$).

REFERENCES

- [1] X.-H. Yan, F.-X. Zhang, H.-H. Xie, X.-Y. Wei, J. Trop. Subtrop. Botany 2000, 2, 171.
- [2] D. S. Bhakuni, S. Gupta, Planta Med. 1983, 48, 52.
- [3] S. Tewari, D. S. Bhakuni, M. Dhar, *Phytochemistry* **1972**, *11*, 1149.
- [4] R. C. Rastogi, N. Borthakur, Phytochemistry 1980, 19, 998.
- [5] H. S. Mohan, H. D. Pathak, Nat. Appl. Sci. Bull. 1975, 27, 95
- [6] J. A. Lopez, W. Barillas, G. L. Jorge, J. Gomez Laurito, F. T. Lin, A. J. Alrehaily, M. H. M. Sharaf, P. L. Schiff, Planta Med. 1995, 61, 198.
- [7] E. H. Hakim, S. A. Achmad, E. L. Ghisalberti, D. C. R. Hockless, A. H. White, *Aust. J. Chem.* 1993, 46, 1355
- [8] S. A. Achmad, E. L. Ghisalberti, E. L. Hakim, L. Makmur, M. Manurung, Phytochemistry 1992, 31, 2153.
- [9] H. Tanaka, T. Nakamura, K. Ichino, K. Ito, T. Tanaka, Phytochemistry 1990, 29, 857.
- [10] K. P. Padmakumari, C. S. Narayannan, J. Essent. Oil Res. 1992, 4, 87.
- [11] L. Q. N. Huang, M.-L. Shu, P.-R. Chen, *Nat. Prod. Res. Dev.* **1994**, *6*, 1.
- [12] N. K. Hart, S. R. Johns, J. A. Lamberton, J. W. Loder, A. Moorhouse, A. A. Sioumis, T. K. Smith, Aust. J. Chem. 1969, 22, 2259.
- [13] I.-L. Tsai, C.-H. Hung, C.-Y. Duh, I.-S. Chen, Planta Med. 2002, 68, 142.
- [14] I.-L. Tsai, C.-H. Hung, C.-Y. Duh, I.-H. Chen, W.-Y. Lin, I.-S. Chen, *Planta Med.* 2001, 67, 856.

- [15] B. M. G. Claros, A. J. R. da Silva, M. L. A. A. Vasconcellos, A. P. P. de Brito, G. G. Leitao, *Phytochemistry* 2000, 55, 859.
- [16] K. Takeda, K. Sakurawi, H. Ishii, Tetrahedron 1972, 28, 3757.
- [17] Y.-W. Guo, M. Gavagnin, E. Mollo, E. Trivellone, G. Cimino, J. Nat. Prod. 1999, 62, 1194.
- [18] C. Juan, V. Martinez, Y. Massayoshi, R. G. Otto, Phytochemistry 1981, 20, 459.
- [19] R. Ratnayake, V. Karunaratne, B. M. R. Bandara, V. Kumar, J. K. Macleod, P. Simmonds, J. Nat. Prod. 2001, 64, 376.
- [20] T. N. Doman, S. L. McGovern, B. J. Witherbee, T. P. Kasten, R. Kurumbail, W. C. Stallings, D. T. Connolly, B. K. Shoichet, J. Med. Chem. 2002, 45, 2213.

Received November 22, 2004